Diagnostic improvement from average image in acute ischemic stroke

N. Magne (1), E. Tollard (1), O. Ozkul-Wermester (2), V. Macaigne (1), J.-N. Dacher (1), E. Gerardin (1)

(1) Department of Radiology, University Hospital of Rouen
(2) Department of Neurology, University Hospital of Rouen
Introduction

• Perfusion CT (pCT) :
 Se = 80%, Sp = 95 % (1) in acute stroke diagnosis

• Diagnostic accuracy depends on : stroke
 size, location and etiology (1,2)

• False negative examinations :
 Posterior fossa stroke, border zone infarcts, microvascular
 stroke (1,2,3)

1 : J.M. Biesbroek et al., Cerebrovasc Dis 2013
2 : T. Hana et al., The Journal of Medical Investigation 2014
3 : R. Mangla et al., Emerg Radiol. 2014
Introduction

• Average image (AI):
 - \(\sum \text{voxel attenuation} / \text{Number of acquisitions of the slice} \)
 - « Average voxel enhancement »
 - Good spatial and contrast resolution (basal ganglia, BG)
 - Provided by commercial software
Purpose

- **Primary objective**
 Evaluate AI maps contribution to acute (< 6h) ischemic stroke diagnosis

- **Secondary objectives**
 - Evaluate AI maps contribution to BG necrosis diagnosis
 - Evaluate interobserver agreement
 - Determine attenuation thresholds
Materials and methods

• Patients:
 - 98 consecutive patients
 - symptoms (onset <6h) suggesting an acute ischemic hemispheric stroke

• Multimodal CT
 - General Electric Lightspeed VCT 64-Slice CT Scanner
 - Non contrast CT (NCCT)
 - pCT (GE perfusion protocol) with BG coverage
 - CT angiography

• MRI
 - Siemens MRI 1.5 T
 - DWI, FLAIR, T2 GE, 3D TOF
Materials and methods

• Image processing
 - Advantage Windows 4.5 (GE)
 - Software : CT perfusion 4D (GE)
 - Perfusion maps :
 MTT, CBV, CBF, Tmax
 - Relative thresholds :
 145% MTT (4)
 60% CBV (5)

4 : A. Bivard et al., Radiology 2013
5 : M. Wintermark et al., Stroke 2006
Materials and methods

- Interpretation
 - 2 independent observers
 - 2 independent interpretations:
 - First blinded of AI maps
 - Then considering it
- Recorded data:
 - Presence of acute stroke, arterial territory involved
 - Disturbed perfusion parameters
 - BG necrosis
 - Attenuation in normal and injured BG => ratios
- MRI within 3 to 5 following days

✓ Attenuation in normal and injured BG => ratios

• MRI within 3 to 5 following days
Example

67 years old patient, right hemiplegia and oculomotor dysfunction
Results: stroke

Without AI

<table>
<thead>
<tr>
<th>MRI</th>
<th>Stroke</th>
<th>No stroke</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCT</td>
<td>63</td>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>No stroke</td>
<td>16</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>19</td>
<td>98</td>
</tr>
</tbody>
</table>

Se = 79.7 %
Sp = 73.7 %

With AI

<table>
<thead>
<tr>
<th>MRI</th>
<th>Stroke</th>
<th>No stroke</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCT</td>
<td>67</td>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>No stroke</td>
<td>12</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>19</td>
<td>98</td>
</tr>
</tbody>
</table>

Se = 84.8 %
Sp = 73.7 %
Results: BG necrosis

Without AI

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Necrosis</td>
<td>No necrosis</td>
</tr>
<tr>
<td>pCT Necrosis</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>No necrosis</td>
<td>22</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>54</td>
</tr>
</tbody>
</table>

\[
\text{Se} = 50 \% \\
\text{Sp} = 100 \%
\]

With AI

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Necrosis</td>
<td>No necrosis</td>
</tr>
<tr>
<td>AI Necrosis</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>No necrosis</td>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>54</td>
</tr>
</tbody>
</table>

\[
\text{Se} = 84.1 \% \\
\text{Sp} = 94.4 \%
\]
Results : thresholds

• Lenticular nuclei
 \(R < 0.94 \) (Se = 95.6\%, Sp = 100\%)

• Caudate nuclei and thalami
 \(R < 0.95 \) (Se = 97.8\%, Sp = 96.2\%)

• Youden indices > 0.9
Results

• Interobserver agreement
 - junior neuroradiologist vs. experienced neuroradiologist
 - Excellent reproducibility for acute stroke diagnosis without and with AI maps: \(\kappa = 0.86 \) and \(\kappa = 0.83 \)
 - Excellent reproducibility for BG necrosis diagnosis using perfusion maps: \(\kappa = 0.84 \)
 - Good reproducibility for BG necrosis diagnosis on AI map: \(\kappa = 0.67 \)
Discussion

• Stroke diagnosis:
 - Se = 79.7%, consistent with previously reported data (1)
 - Low specificity of 73.7% (1) : 3 TIA included
 - AI maps provided 4 additional diagnoses of stroke :
 Se = 84.8%

• BG necrosis
 - AI sensitivity > CBV sensitivity : 84.1 % vs. 50 %
 - AI has high specificity (94.4 %)
 - Thresholds differentiating necrosis from normal attenuation

1 : J.M. Biesbroek et al. Cerebrovasc Dis 2013
Discussion

• AI shows necrosed lesions in BG:
 - AI shows the average enhancement of parenchyma (first pass and recirculation)
 - These lesions were not hypoattenuating on NCCT: hypoattenuation on AI was the consequence of weak/absent enhancement
 - Lesions identified by AI showed restricted diffusion and were hyperintense on FLAIR
Conclusion

• AI map:

✓ Increased pCT sentivity to acute stroke diagnosis, showing BG necrosis
✓ Has good specificity and good interobserver agreement
✓ Is provided by commercial software
✓ Without additional post processing
1. Diagnostic Accuracy of CT Perfusion Imaging for detecting Acute Ischemic Stroke: A Systematic Review and Meta-Analysis.

3. CT perfusion in acute stroke: Know the mimics, potential pitfalls, artifacts, and technical errors.

 A. Bivard et al. Radiology: Volume 267: Number 2—May 2013

5. Perfusion-CT Assessment of Infarct Core and Penumbra: Receiver Operating Characteristic Curve Analysis in 130 Patients Suspected of Acute Hemispheric Stroke